HubunganAntarsudut. Sudut saling berpelurus (bersuplemen): besar jumlah dua sudut yang saling berpelurus (bersuplemen) adalah 180 0 Contoh: β POR + β QOR = 180 0. Contoh: β P = 60 0 , maka suplemennya = 180 0 β 60 0 = 120 0. Sudut saling berpenyiku (berkomplemen): besar jumlah dua sudut yang berpenyiku adalah 90 0. β POQ + β QOR = 90 0.
MenurutPasal 5 KUHAP, kewenangan penyelidik adalah sebagai berikut. a. Penyelidik sebagaimana dimaksud dalam Pasal 4 KUHAP : 1) Karena kewajibannya mempunyai wewenang : Secara garis besar fungsi dan peranan advokat, sebagai berikut: karena dengan demikian maka hubungan cukup menjadi dua pihak dan segala tindakan antara penyidik dengan
HubunganAntara Dua Garis Berikut ini adalah macam-macam hubungan antara dua garis: a. Garis sejajar Dua buah garis akan dikatakan sejajar apabila garis tersebut terdapat pada bidang datar dan tidak akan berpotongan walaupun garis tersebut diperpanjang.
Jawabanhubungan kedua garis tersebut adalah saling berpotongan dan ilustrasi grafiknya seperti pada gambar di atas. Pembahasan Jawaban yang benar untuk pertanyaan tersebut adalah kedua garis saling berpotongan dan ilustrasi grafiknya
Sudutdibentuk dari dua buah garis. Posisi dua buah garis ini dapat menciptakan dua buah sudut yang saling berhubungan. Hubungan dua buah sudut terbagi menjadi tiga jenis yaitu, sudut berpelurus, sudut berpenyiku, dan juga sudut bertolak belakang. Sudut berpelurus Sudut berpelurus adalah sudut yang terbentuk dari dua buah garis.
Jikagaris mengarah keatas berarti korelasi positif, jika arah garis menurun berarti korelasi negatif. Jika tidak dapat dibuat sebuah garis maka tidak ada korelasi,dan jika titik-titik tepat melalui garisnyaberarti korelasi sempurna. Manfaat Diagram Pencar . membantu menunjukkan apakah terdapat hubungan yang bermanfaat antara dua variabel
Berikutadalah tahapan untuk menggambar grafik fungsi kuadrat y=ax 2 +bx+c. Hubungan Garis Dengan Parabola. Berdasarkan D = b 2 β 4ac, kedudukan garis pada parabola dibagi menjadi 3 macam, antara lain: D > 0 berarti garis akan memotong parabola ada di dua titik. D = 0 berarti garis memotong parabola di satu titik (menyinggung)
Hubunganantara Mamak dan Kamanakan ini juga tertuang dalam pepatah minang: Anak dipangku, kamanakan dibimbiang. Bako β Anak Pisang. Hubungan antara Bako dan Anak Pisang ini terjadi karena adanya pernikahan antara ibu kamu dan ayah kamu. Misalkan A adalah ibu kamu dan B adalah ayah kamu serta kamu adalah C yang merupakan anak dari keduanya.
StrukturOrganisasi (Pengertian, Unsur, Jenis, Bentuk dan Faktor yang Mempengaruhi) Oleh Muchlisin Riadi September 01, 2020. Struktur organisasi adalah suatu diagram yang menggambarkan rantai perintah, hubungan pekerjaan, tanggung jawab, rentang kendali dan pimpinan organisasi berfungsi sebagai kerangka kerja dan tugas pekerjaan yang
garish dengan persamaan. Ditanyakan: persamaan garis-bagi antara garis g dan h tersebut. Jawab: Perhatikan bahwa garis g dan h dapat dinyatakan dalam bentuk A x + B y + C = 0 sebagai berikut: g β‘ 7 x β 2 y = 0. h β‘ x β 2 y = 0. Substitusikan A 1 = 7, B 1 = -2, C 1 = 0, A 2 = 1, B 2 = -2, dan C 2 = 0 ke dalam rumus (*), diperoleh
Ibaratkansedotan sebagai garis dan kertas HVS sebagai bidang. 2. Cobalah berbagai kemungkinan hubungan antara dua garis menggunakan sedotan dan hasil yang kalian peroleh tempelkan pada bidang (kertas HVS). 3. Tulislah kesimpulan yang kelompok kalian peroleh dari percobaan mengenai hubungan dua garis tersebut pada kolom berikut ini. 4.
Pernyataanyang salah dari pendapat berikut adalaha. dua garis sejajar tidak mempunyai titik potong. C. Hubungan Sudut-sudut pada dua Garis Sejajar. Masalah 7.3. Coba perhatikan Gambar 7.40 berikut, yakni gambar lintasan kereta api dan modelnya. Dua garis berwarna hijau, merupakan dua segmen garis sejajar, kita sebut garis k dan
Ketigabagian ini disebut unsur-unsur ruang. Unsur-unsur titik, garis dan bidang dalam geometri merupakan istilah-istilah dasar. Sebagaimana kita ketahui bahwa istilah dasar adalah suatu istilah yang hanya dapat dideskripsikan atau dipaparkan. Dengan demikian, titik, garis, dan bidang dapat dideskripsikan sebagaimana dalam uraian berikut ini : 1.
Pelajaran Soal & Rumus Hubungan Antar Sudut. Kalau kamu ingin belajar materi matematika hubungan antar sudut secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sediakan. Di sini, kamu akan belajar tentang Hubungan Antar
Karenakarya seni terapan terapan memiliki nilai fungsi yang tinggi maka unsur-unsurnya harus digunakan agar tujuan karya tersebut dapat tercapai. Berikut ini unsur-unsur yang perlu Grameds ketahui saat membuat karya seni terapan: 1. Arah. Arah adalah unsur seni rupa yang ditunjukan dengan lurus, belok, horizontal, vertical, condong, dan
JwXUf. Jawaban yang benar untuk pertanyaan tersebut adalah kedua garis saling berpotongan dan ilustrasi grafiknya sesuai dengan gambar pada pembahasan. Ingat untuk menentukan hubungan antara dua garis yaitu dengan mengetahui gradien dari masing-masing garis tersebut dengan menggunakan rumus umum persamaan garis lurus yaitu . Dari rumus tersebut dapat diketahui bahwa gradien dari garis adalah dan gradien dari garis adalah . Karena gradien kedua garis tersebut berbeda dan tidak masuk kriteria tegak lurus maka garis tersebut merupakan garis yang saling berpotongan. Membuat ilustrasi grafik dengan menentukan titik potong pada grafik dengan menggunakan tabel. Grafik seperti pada gambar berikut. Dengan demikian, hubungan kedua garis tersebut adalah saling berpotongan dan ilustrasi grafiknya seperti pada gambar di atas.
Apa Contoh Garis Sejajar?Apa Kondisi Dua Baris Yang Sesuai?Apa Yang Dimaksud Dengan Dua Garis Yang Saling Sejajar?Apa Syarat Dua Garis Dikatakan Berimpit?Apa Yang Dimaksud Dengan Garis Sejajar?Berapa Macam Hubungan Antar Garis? Hubungan dua garis? β gambar dua contoh hubungan antara garis garis adalah gambar silang zebra dan jendela. Gambarnya ada di lampiran kedua. Dua garis paralel akan memiliki kemiringan atau gradien yang sama. Kedua garis akan memiliki arah yang sama. 1. 2 baris yang tidak saling bergantung tidak akan membentuk sudut, tetapi hanya 2 baris dalam arah yang sama dan jarak antara pointer akan sama. 2. Hubungan garis berpotongan akan membentuk sudut di mana ketika garis lurus berpotongan dengan garis lurus lain, itu akan membentuk sudut berikut sudut perawatan sudut dengan jumlah total 180 derajat, sudut penggantian belakang the sudut yang sama,. Apa Contoh Garis Sejajar? Beberapa benda di sekitar kita menunjukkan hubungan garis yang saling sejajar, contohnya sebagai berikut. 1. Lintasan rel kereta api, yang saling sejajar meskipun panjangnya tidak terhingga. 2. Daun yang memiliki tulang sejajar, seperti daun mangga. 3. Zebra cross atau jalur penyeberangan. Apa Kondisi Dua Baris Yang Sesuai? ~ Dua buah garis dikatakan sejajar apabila kedua garis tersebut terletak pada satu bidang datar yang tidak akan berpotongan meskipun diperpanjang tanpa batas. Apa Yang Dimaksud Dengan Dua Garis Yang Saling Sejajar? question. sejajar dua buah garis dikatakan sejajar apabila kedua garis tersebut terletak pada satu bidang datar yang tidak akan berpotongan meskipun diperpanjang tanpa batas. Apa Syarat Dua Garis Dikatakan Berimpit? ~ Dua buah garis yang terletak pada satu bidang datar dikatakan berimpit jika dan hanya jika kedua garis itu memiliki paling sedikit dua titik potong dua titik persekutuan. Apa Yang Dimaksud Dengan Garis Sejajar? Sejalan adalah bahwa kedua baris memiliki arah yang sama. Garis yang ada tidak memiliki poin federal. Garis pemotongan adalah bahwa kedua baris memiliki tepat satu poin federal. Berapa Macam Hubungan Antar Garis? 3 jenis hubungan antar garis garis sejajar. garis berpotongan. garis berimpit.
Blog Koma - Sebelumnya telah dibahas tentang "Persamaan Garis Lurus dan Grafiknya" serta "Gradien dan Menyusun Persamaan Garis Lurus". Kali ini kita akan membahas tentang hubungan dua garis lurus. Untuk memudahkan mempelajari materi ini, sebaiknya pelajari dahulu materi "Gradien". Hubungan dua garis yang akan dipelajari adalah dua garis yang sejajar berimpit dan tegak lurus berpotongan. Hubungan dua garis lurus sangat penting untuk kita pelajari karena biasanya untuk menentukan besarnya gradien kemiringan suatu garis bergantung dari garis lain. Dengan mengetahui hubungan kedua garis, maka kita pasti bisa menentukan gradien masing-masing. Selain penerapannya pada garis lurus secara langsung, hubungan dua garis khususnya gradiennya juga berguna ketika kita mempelajari materi garis singgung kurva dan garis singgung lingkaran serta garis singgung pada irisan kerucut. Hubungan Dua Garis Lurus Macam - macam Hubungan Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ . Ada beberapa hubungan yang bisa kita peroleh dari kedua garis tersebut, yaitu *. sejajar Dua garis sejajar syaratnya gradiennya sama $m_1=m_2$. Jika dilihat dari koefisiennya, syarat kedua garis sejajar yaitu $ \frac{a}{p} = \frac{b}{q} $ . Jika $ \frac{a}{p} = \frac{b}{q} = \frac{c}{r} \, $ , maka kedua garis tersebut berimpit. Dan jika $ \frac{a}{p} \neq \frac{b}{q} , \, $ maka kedua garis pasti berpotongan. *. Tegak lurus Dua garis tegak lurus syaratnya perkalian gradien kedua garis hasilnya $ -1 \, $ atau $ m_1 \times m_2 = -1 $. Jika dilihat dari koefisiennya, syarat dua garis tegak lurus yaitu $ \frac{a}{b} = -\frac{q}{p} $ . Contoh 1. Dari Persamaan garis berikut, manakah pasangan garis yang sejajar dan tegak lurus! a. $ 2x - y = 5 $ b. $ 6x + 2y -3 = 0 $ c. $ x + 2y -7 = 0 $ d. $ -4x + 2y = 1 $ e. $ -x + 3y - 7 = 0 $ Penyelesaian *. Kita tentukan gradien masing-masing Konsep $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $ a. $ 2x - y = 5 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{-1} = 2 $ b. $ 6x + 2y -3 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{6}{2} = -3 $ c. $ x + 2y -7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{2} $ d. $ -4x + 2y = 1 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-4}{2} = 2 $ e. $ -x + 3y - 7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-1}{3} = \frac{1}{3} $ *. Garis yang sejajar adalah garis a dan garis d. *. Garis yang tegak lurus adalah garis a dan c, serta garis b dan garis e. 2. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan sejajar dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari sejajar dengan garis $ y = -3x + 5, \, $ maka gradiennya sama, sehingga gradien garis yang dicari adalah $ m = m_1 = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = -3x-1 \\ y + 3 & = -3x+1 \\ y + 3 & = -3x - 3 \\ y & = -3x - 6 \end{align} $ Jadi, persamaan garisnya adalah $ y = -3x - 6 $ 3. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan tegak lurus dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari tegak lurus dengan garis $ y = -3x + 5, \, $ maka $ = -1 \rightarrow -3. m_2 = -1 \rightarrow m_2 = \frac{1}{3} \, $ . artinya gradien garis yang kita cari adalah $ m = \frac{1}{3} $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = \frac{1}{3} $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = \frac{1}{3}x-1 \\ y + 3 & = \frac{1}{3}x+1 \\ 3y + 9 & = x + 1 \\ x - 3y & = 8 \end{align} $ Jadi, persamaan garisnya adalah $ x - 3y = 8 $ 4. Diketahui garis $ p+1x - 3y = 3 $ tegak lurus dengan garis $ 2x + 2p - 1y + 3 = 0 , \, $ tentukan nilai $ 4p - 1 $ Penyelesaian *. Menentukan gradien masing-masing $ p+1x - 3y = 3 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{p+1}{-3} = \frac{p+1}{3} $ $ 2x + 2p - 1y + 3 = 0 \rightarrow m_2 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{2p-1} $ *. Syarat dua garis tegak lurus $ = -1 $ $ \begin{align} & = -1 \\ \left \frac{p+1}{3} \right . \left - \frac{2}{2p-1} \right & = -1 \\ \left \frac{2p+2}{6p - 3} \right & = 1 \\ 2p + 2 & = 6p - 3 \\ 6p - 2p & = 2 + 3 \\ 4p & = 5 \\ p & = \frac{5}{4} \end{align} $ Sehingga nilai $ 4p - 1 = 4. \frac{5}{4} - 1 = 5 - 1 = 4 $ Jadi, nilai $ 4p-1 = 4 $ Besarnya sudut antara Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ yang masing-masing memiliki gradien $ m_1 \, $ dan $ m_2 . \, $ Besarnya sudut antara kedua garis adalah $ \alpha , \, $ yang dapat ditentukn dengan rumus $ \tan \alpha = \frac{m_1 - m_2}{1+ } $ Contoh Tentukan besarnya sudut yang dibentuk oleh kedua garis $ y = \sqrt{3}x + 3 \, $ dan garis $ y = -\sqrt{3}x + 7 $ ! Penyelesaian *. Menentukan gradien masing-masing $ y = \sqrt{3}x + 3 \rightarrow m_1 = \sqrt{3} $ $ y = -\sqrt{3}x + 7 \rightarrow m_2 = -\sqrt{3} $ *. Menentukan besar sudut kedua garis $ \begin{align} \tan \alpha & = \frac{m_1 - m_2}{1+ } \\ & = \frac{\sqrt{3} - -\sqrt{3}}{1+\sqrt{3}.-\sqrt{3} } \\ & = \frac{2\sqrt{3}}{1+ -3 } \\ & = \frac{2\sqrt{3}}{-2} \\ \tan \alpha & = -\sqrt{3} \end{align} $ Diperoleh $ \tan \alpha = - \sqrt{3} \, $ , berdasarkan tabel trigonometri maka diperoleh $ \alpha = 120^\circ $ Atau sudut terkecil kedua garis adalah $ 180^\circ - 120^\circ = 60^\circ $ Jadi, besar sudut yang dibentuk oleh kedua garis adalah $ 60^\circ $ . Menentukan perpotongan dua garis lurus Contoh Tentukan persamaan garis lurus yang melalui perpotongan garis $ 3x - y = 2 \, $ dan garis $ 2x + y = 3 \, $ serta tegak lurus dengan garis $ x - 3y + 2 = 0 $ ! Penyelesaian *. Menentukan titik potong kedua garis dengan eliminasi dan substitusi $\begin{array}{cc} 3x - y = 2 & \\ 2x + y = 3 & + \\ \hline 5x = 5 & \\ x = 1 & \end{array} $ Persii $ 2x + y = 3 \rightarrow 2 . 1 + y = 3 \rightarrow y = 3 - 2 = 1 $ Sehingga titik potong kedua garis adalah 1,1 *. Menentukan gradien $ x - 3y + 2 = 0 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{-3} = \frac{1}{3} $ *. Karena garis yang dicari tegak lurus dengan garis $ x - 3y + 2 = 0, \, $ maka $ = -1 \rightarrow \frac{1}{3}. m_2 = -1 \rightarrow m_2 = -3 $ . artinya gradien garis yang kita cari adalah $ m = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =1,1 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - 1 & = -3x-1 \\ y - 1 & = -3x + 3 \\ 3x + y & = 4 \end{align} $ Jadi, persamaan garisnya adalah $ 3x + y = 4 $
Hubungan Dua Garis Lurus padaPersamaan Garis Lurus Dalam hubungannya dengan materi garis, terdapat hubungan antargaris. Hubungan antar garis antara lain meliputi garis-garis yang sejajar, garis-garis yang berpotongan, dan garis-garis yang bersilangan. Dalam materi persamaan garis lurus ini akan dipelajari hubungan garis yang sejajar dan garis berpotongan tegak lurus. Dua garis sejajar dan garis berpotongan tegak lurus dapat digambarkan seperti ingin mengetahui kedudukan garis, maka perhatikan pada gradien dari kedua garis tersebut. Misalkan gradien garis a = m1 dan gradien garis b = m2 maka berlaku 1. Kedua garis sejajar jika dan hanya jika m1 = m2 2. Kedua garis berpotongan tegak lurus jika dan hanya jika m1 . m2 = -1 atau m1 = 21 m β Lebih jelasnya perhatikan contoh berikut. Tentukan gradien garis yang memiliki kedudukan sebagai berikut 1. Sejajar dengan garis y = 3x + 5 2. Sejajar dengan garis 2x + 5y = 10 3. Sejajar dengan garis 4x - 9y = 45 4. Sejajar dengan garis 6x + 3y - 15 = 0 5. Sejajar dengan garis yang melalui titik 2,1 dan 4, 9 6. Tegak lurus dengan garis y = 5x β 12 7. Tegak lurus dengan garis 4x - 2y = 17 8. Tegak lurus dengan garis 3x + 5y = 18 9. Tegak lurus dengan garis yang melalui titik 0,3 dan 3, 10 10. Tegak lurus dengan garis yang melalui titik -4,2 dan -1, -7. Jawaban Untuk nomor 1 sampai dengan 5 kedudukan garisnya sejajar. Berarti kita mencari gradien yang sama dengan gradien garis-garis tersebut. 1. Garis y = 3x memiliki gradien 3. Jadi, gradien garis yang sejajar garis tersebut adalah 3. 2. Garis 2x + 5y = 10 memiliki gradien -2/5. Jadi, gradien garis yang sejajar garis tersebut adalah 2/5. 3. Garis 4x - 9y = 45 memiliki gradien 4/9. Jadi, gradien garis yang sejajar garis tersebut adalah 4/9. 4. Garis 6x + 3y - 15 = 0 memiliki gradien -2. Jadi, gradien garis yang sejajar garis tersebut adalah -2. 5. Garis yang melaui titik 2,1 dan 4, 9 memiliki gradien 4. Jadi, gradien garis yang sejajar garis tersebut adalah 4. Untuk nomor 6 sampai dengan 10 kedudukan garisnya saling tegak lurus. Berarti kita mencari gradien apabila dikalikan hasilnya -1. Atau gradien baru yang sama dengan gradien garis-garis tersebut. 6. Garis y = 5x - 12 memiliki gradien 5. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -1/5. 7. Garis 4x - 2y = 17 memiliki gradien 2. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -1/2. 8. Garis 3x + 5y = 18 memiliki gradien -3/5. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah 5/3. 9. Garis yang melalui titik 0,3 dan 3, 10 memiliki gradien 7/3. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -3/7. 10. Garis yang melalui titik -4,2 dan -1, -7 memiliki gradien -3. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah 1/3. Setelah tahu dan paham tentang cara menentukan gradien pada hubungan garis yang sejajar dan tegak lurus, mari melanjutkan tentang cara menentukan persamaan garis diingat bahwa ketika akan menentukan persamaan garis lurus, tentukan dahulu gradien garis dan koordinat titik yang akan dilalui. Dalam menentukan persamaan garis lurus, kita akan banyak menggunakan rumus dasar y - y1 = mx - x1. Marilah membahas beberapa contoh soal dan pembahasannya berikut ini. 1 Tentukan persamaan garis lurus yang sejajar dengan garis y = 3x + 5 dan melalui titik 2, -1. Jawaban Gradien garis y = 3x + 5 mempunyai gradien 3. Sehingga kita mencari persamaan garis yang bergradien 3 dan melalui titik 2, -1. y - y1 = mx - x1 y - -1 = 3x - 2 y + 1 = 3x β 6 y = 3x - 6 β 1 y = 3x β 7 Jadi,persamaan garis yang sejajar garis y = 3x + 5 dan melalui titik 2, -1 adalah y = 3x - 7. 2 Tentukan persamaan garis yang melaui titik -3, 2 dan sejajar dengan garis 2x + 4y - 9 = 0. Jawaban Gradien garis 2x + 4y - 9 = 0 adalah -1/2. Sehingga kita akan mencari persamaan garis lurus yang bergradien -1/2 dan melalui titik -3, 2 y - y1 = mx - x1 y - 2 = -1/2x - -3 2y - 4 = -x + 3 2y - 4 = -x β 3 2y + x - 4 +3 = 0 2y + x - 1 = 0 x + 2y - 1 = 0Jadi, persamaan garis yang melaui titik -3, 2 dan sejajar dengan garis 2x + 4y - 9 = 0adalah x + 2y - 1 = 0. 3 Tentukan persamaan garis lurus yang tegak lurus dengan garis y = -3x + 4 dan melalui titik 1, 5. Jawaban Gradien garis y = -3x + 4 adalah -3. Gradien garis yang tegak lurus garis tersebut adalah 1/3. Oleh karena itu, kita akan mencari persamaan garis yang bergradien 1/3 dan melalui titik 1, 5 y - y1 = mx - x1 y - 5 = 1/3x - 1 3y - 15 = x β 1 3y - 15 - x + 1 = 0 3y - x - 14 = 0 -x + 3y - 14 = 0Jadi, persamaan garis lurus yang tegak lurus dengan garis y = -3x + 4 dan melalui titik 1, 5 adalah -x + 3y - 14 = 0 4 Perhatikan gambar persamaan garis k. Jawaban Garis yang melaui titik 0,2 dan 10, 7 memiliki gradien 1/2. Garis k tegak lurus dengan garis tersebut. Sehingga gradien garis k adalah -2. Sehingga persamaan garis k adalah garis yang melalui titik 6, 0 dan bergradiem -2. y - y1 = mx - x1 y - 0 = -2x - 6 y = -2x + 6 Jadi, persamaan garis k adalah y = -2x+ 65 Perhatikan gambar Garis yang melaui titik 0,4 dan 6, 0 memiliki gradien -2/3. Garis h sejajar dengan garis tersebut. Sehingga gradien garis h adalah -2/3. Sehingga persamaan garis h adalah garis yang melalui titik 4, 6 dan bergradiem -2/3. y - y1 = mx - x1 y - 6 = -2/3x - 4 3y - 6 = -2x - 4 3y - 18 = -2x + 8 3y + 2x - 18 - 8 = 0 3y + 2x - 26 = 0 Jadi, persamaan garis h adalah 3y + 2x - 26 = 0
hubungan dua garis berikut adalah